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This paper provides a practical, hands-on introduction to cross-recurrence quantification
analysis (CRQA), diagonal cross-recurrence profiles (DCRP), and multidimensional
recurrence quantification analysis (MdRQA) in R. These methods have enjoyed
increasing popularity in the cognitive and social sciences since a recognition that many
behavioral and neurophysiological processes are intrinsically time dependent and reliant
on environmental and social context has emerged. Recurrence-based methods are
particularly suited for time-series that are non-stationary or have complicated dynamics,
such as longer recordings of continuous physiological or movement data, but are
also useful in the case of time-series of symbolic data, as in the case of text/verbal
transcriptions or categorically coded behaviors. In the past, they have been used to
assess changes in the dynamics of, or coupling between physiological and behavioral
measures, for example in joint action research to determine the co-evolution of the
behavior between individuals in dyads or groups, or for assessing the strength of
coupling/correlation between two or more time-series. In this paper, we provide readers
with a conceptual introduction, followed by a step-by-step explanation on how the
analyses are performed in R with a summary of the current best practices of their
application.

Keywords: RQA, cross-recurrence quantification analysis, diagonal cross-recurrence profile, multidimensional
recurrence quantification analysis, R, tutorial

INTRODUCTION

The assessment of behavioral and physiological dynamics, as well as the time-dependent coupling of
physiological and behavioral activities were always of interest to the behavioral and social sciences.
However, the proper assessment of dynamics and coupling has gained increased prominence in
recent years in at least two areas of inquiry: One is the multidimensional assessment of physiological
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processes, i.e., physiological markers of emotional processes, after
it had become generally accepted that no single feature (e.g., level
of activity) of individual physiological measures (e.g., heart rate)
are fully transparent to specific subjective states of arousal and
emotion (see Kreibig, 2010, for a review). The other is research
on joint action, where the goal is to understand online dynamic
behavior of dyads or groups, and how their joint behavior
influences subjective perceptions of the group members as well
as their performance (see Marsh et al., 2009; Knoblich et al., 2011,
for reviews).

What is common across these two domains of research is
that they usually deal with multiple time-series (i.e., multiple
physiological indicators or behavioral measures from multiple
group members) that are often non-stationary, or possess other
interesting dynamics. In the area of research on joint action,
one prominent class of analysis methods that has been used
increasingly in the last 10–15 years consists of several methods
originating from the analysis of Recurrence Plots (RP; e.g.,
Shockley et al., 2003, 2007; Richardson and Dale, 2005; Dale et al.,
2011b; Abney et al., 2014; Fusaroli and Tylén, 2016; Mønster et al.,
2016; Wallot et al., 2016a,b; Vink et al., 2017).

This class of recurrence-based methods, while it has its roots
in dynamical systems analysis and physics, is quickly emerging
as a robust general-purpose technique to quantify order and
organization (Webber et al., 2009), usually (but not only) in
time-dependent signals and behaviors, and it has already found
its way into several scientific fields. We can characterize it as
a class of multivariate and generalized correlational analyses,
that are suited for joint action data because they make very few
assumptions and are particularly robust in case of non-linearities,
non-stationary dynamics, and time-series with extreme outliers
(Webber and Zbilut, 2005; Marwan et al., 2007; Fusaroli et al.,
2014). For those reasons, they also have proven very robust to
analyze data from joint action phenomena in semi-experimental
and naturalistic settings, such as doctor-patient conversations
(Angus et al., 2012), natural conversation between parents and
children (Dale and Spivey, 2006), interaction between mothers
and infants (Reddy et al., 2013; Nomikou et al., 2016; Abney
et al., 2017), or shared emotional states during social rituals
(Konvalinka et al., 2011). Apart from gaging the ordered,
coordinated features of behaviors in time per se, the methods
have the potential to shed lights into the transitions from an
ordered state to another (Trulla et al., 1996), and hence to allow
the mapping of singularities and characterizing instabilities in
coordinated states and phase transitions (see e.g., Zbilut et al.,
2002; Stephen et al., 2009a,b; Lichtwarck-Aschoff et al., 2012).

While these analyses have not received equal prominence in
biopsychological research, many applications exists in the area
of physiology (e.g., Webber and Zbilut, 1994; Webber et al.,
1995; Dabiré et al., 1998; Giuliani et al., 1998; Zbilut et al., 2002;
Marwan et al., 2005; Javorka et al., 2008; Schinkel et al., 2009;
Acharya et al., 2011; Andrade et al., 2012; Fisher et al., 2015) and
movement research (e.g., Kiefer et al., 2011; Ramenzoni et al.,
2011).

Particularly, the multivariate methods we will introduce in
the following sections allow to analyze non-stationary time-series
and to assess how strongly two time-series are correlated, whether

they exhibit leader-follower relationships (i.e., one measure
following the time-course of the other by a certain lag), or how
multiple (n > 2) variables evolve together over time. Hence, these
methods can be used to assess levels and types of synchrony,
coupling and entrainment of signals, and whether these change as
a function of experimental manipulations – for example, in many
joint action studies relevant task variables are manipulated (such
as cooperative style, induced emotion, or social role), and their
effects on degrees of behavioral or physiological synchronization
are examined. In turn, synchronization properties are usuall
used as mediating variables to predict subjective and objective
task outcomes, such a quality and quantity of performance,
joy or satisfaction. Hence, these methods can be used to for
exploratory purposes, examining whether synchronization – or
other kinds of coordination happens, or to test specific hypothesis
about behavioral of physiological coordination under different
conditions.

One reason why recurrence-based analyses are perhaps
not equally prominent across all fields of research that deal
with multivariate time-series is the lack of courses taught at
Universities to students of the respective disciplines, but also
the lack of implementation of the techniques in standard
statistical software packages (such as STATA, JMP, SPSS,
etc.). Several applications exist in C, MatLab, Python, R or
other languages (an overview over different software packages
can be found at www.recurrence-plot.tk, hosted by Norbert
Marwan), but not all potentially interested users are familiar
with those programming languages. However, in R a few
packages implementing recurrence-based analyses are available
for univariate and multivariate data analysis.

The aim of the current paper is to give a hands-on
introduction to multivariate recurrence-based methods. We
will specifically focus on the analysis of bivariate dynamics/
coordinated time-series (cross-recurrence quantification
analysis; CRQA – Zbilut et al., 1998; Marwan and Kurths, 2002),
on the analysis of leader-follower relations in bivariate time-
series (diagonal cross-recurrence profile; DCRP – Richardson
and Dale, 2005), and on the analysis of multivariate dynamics
(multidimensional recurrence quantification analysis; MdRQA –
Wallot et al., 2016b). We chose to present this tutorial in R
because of the increasing popularity and availability of this
software due to its free-ware nature, and the basic familiarity of
many researchers with this environment.

In the following, we will first provide a brief overview over
the central concepts of recurrence-based analyses and (auto)
RQA, i.e., the analysis of a single time-series, together with the
central steps in conducting the analyses. RQA is not at the core
of this paper, as we are specifically interested in multivariate
applications. However, presenting RQA briefly in the beginning
helps to explain the concept of recurrence and the steps in
conducting these analyses in general. Thereafter, we will provide
a detailed hands-on introduction for conducting each of the three
analysis techniques, presenting the necessary R-commands step-
by-step. While CRQA and DCRP can be conducted using the
crqa()- and drpdfromts()-function form the ‘crqa’ package (Coco
and Dale, 2014), we provide readers with a new R-function for
MdRQA in the Supplementary Materials to this paper, which
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has only been available in MatLab so far (Wallot et al., 2016b). At
the end of each section, we discuss common issues of the analyses
and the current best practice. Finally, we close the article with
remarks and suggestions on how to use these analyses in sample
comparisons.

RECURRENCE-BASED ANALYSES

As the name implies, the core-concept of recurrence-based
analyses is recurrence – repetition of elements or patterns in a
sequence. The core tool of these analyses is the recurrence plot or
recurrence matrix, which is a means of displaying and charting
repetitions in a sequence. As we will see further below, the
analyses are usually not performed on the original 1-dimensional
sequence or time-series, but on its phase-space portrait, which we
will describe in more detail below. However, all of the analyses
can be performed on the raw data. We will return to this issue
later at the end of the section on parameter estimation.

Before we introduce particular variants of recurrence-based
analyses, we want to briefly show how the recurrence plot
captures repeating patterns in a sequence. Even though we are
not interested in auto-recurrence analysis of a single time-series
in this tutorial, we will briefly start with such an example in
order to illustrate the concept of the recurrence plot. This can
be easily illustrated using a simple, short 1-dimensional nominal
sequence, “ABCDDABCDD.” The sequence is arbitrary (it could
represent a series of coded behaviors of a participant over time),
but is clearly not random, containing repetitive sub-sequences.
A recurrence plot can be used to visualize these repeating
characteristics by comparing all the elements of such a sequence
with themselves, when aligned in the two dimensions of the plot
(see Figure 1A).

The recurrence plot in Figure 1A needs not be limited to
recurrences within the same single sequence. In other words,

similar to the arbitrary letter-sequence presented above, we
can extend the concept of the auto-recurrence plot of a single
sequence and create a cross-recurrence plot, which examines
cross-recurrences between two sequences, as in Figure 1B. Note
that while the recurrence plot in Figure 1A possesses a diagonal
of recurrent points (which simply means that every element in
the sequence is recurrent with itself at lag 0), the cross-recurrence
plot in Figure 1B does not necessarily possess such a diagonal.
Moreover, while the recurrence plot is fully symmetrical about its
main diagonal, this is not the case for the cross-recurrence plot.
This is, because the two sequences in Figure 1B are not identical,
but rather share only parts of their elements and sequential
characteristics.

The cross-recurrence plot is not just a useful tool to visualize
or display the sequential similarity of two sequences, but can
be used to quantify their similarity. For example, the tally
of all recurrent points on the plot tells us something about
the repetitiveness of the individual elements across the two
sequences, and we refer to this quantity as percent recurrence
(%REC). Counting all recurrent points that have other, diagonally
adjacent recurrent points and dividing them by %REC tells
us something about the degree to which elements that occur
in one sequence as larger, connected patterns also occur in
the other sequence in the same order. This quantity is called
percent determinism (%DET). Counting the average length of
all diagonal lines of cross-recurrence points tells us something
about the average size of the shared patterns (Average Diagonal
Line, ADL). However, there are many more ways to quantify
the (cross-)recurrence plot, and Table 1 charts the most
common measures and their definition. All of them provide
us with information of how the two sequences are similar or
correlated.

As the application to the toy nominal data shows, recurrence-
based analyses are very versatile. They can be used to compare
sequences or time-series of nominal, ordinal, or interval-scale

FIGURE 1 | Illustration of recurrence of letters in the sequence “ABCDDABCDD” (A), and cross-recurrence of letters in the sequence “ABCDDABCDD” with
“DDEFGABCDD” (B). The black squares in the matrices indicate the recurrence of a letter, and white spaces indicate the absence of recurrence. The distribution of
recurrent points on the recurrence plot can be quantified to yield statistics of the repetitive patterns in a sequence.
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TABLE 1 | The most common cross-recurrence measures.

Variable name Definition Quantifies. . .

Percent Recurrence (%REC) Sum of recurrent points in RP /Size of RP . . .repetition of elements across the two sequences.

Percent Determinism (%DET ) Sum of diagonally adjacent recurrent points / Sum of
recurrent points in RP

. . .how many of the individual repetitions co-occur in
connected trajectories.

Average Diagonal Line Length (ADL) Average diagonal lines in RP . . .how long the average cross-repeating trajectory is.

Maximum Diagonal Line Length (MDL) Length of longest diagonal line in RP (excluding the
main diagonal)

. . .how long the longest cross-repeating trajectory is.

Further RQA measures exist, and others are being developed – for the description of additional measure, see for example Marwan et al. (2007).

data. They make no assumptions about the distribution of data
points, and are robust in the face of outliers and non-stationarity.
However, they require multiple data points. Depending on the
data at hand, the analyses can be used with as few as 10–30 data
points, the upper limit being only set by the computational power
accessible. However, we will return to data requirements in more
detail at the end of the paper.

In the following section, we will apply the basic concept
of recurrence and the recurrence plot to coupled time-series,
especially multivariate cases where the correlation of the common
dynamics of two (or more) time-series are of interest. Before
that though, we will introduce the basic steps of parameter
estimation that are necessary to conduct multivariate recurrence-
based analyses, and reconstruct the multidimensional phase-
space of a 1-dimensional time-series, on which the recurrence
plot is computed.

R PACKAGES NEEDED

The following R packages – as well as their dependencies – need
to be installed and loaded to run the tutoril: ‘crqa,’ ‘entropy,’
’nonlinearTseries,’ ‘plot3D,’ ‘SDMTools,’ and ’tseriesChaos.’ The
mdrqa()-function for the computation of MdRQA is not included
in any R-package yet, but can be found in the Supplementary
Materials to this paper.

GENERATING EXAMPLE DATA

Here, our primary aim is to show how different recurrence-based
analyses can be used to analyze multivariate dynamics, meaning
the evolution of a single system that is distributed across multiple
interdependent observables, or the evolution of different systems,
but whose behaviors are coupled. To that end, we want to use the
Lorenz-system (Lorenz, 1963), which is a system of three coupled
differential equations (eq. 1):

ẋ = σ(y− x)

ẏ = x(ρ− z) − y

ż = xy− βz (1)

The variables x, y and z are the three dimensions of the system
that originally modeled hydrodynamic features, where the three
dimensions represent the rotation rate in the fluid and two
temperature measures (Lorenz, 1963). The parameters σ, ρ, and β

are coupling parameters. Here, we are interested in interpreting
the system as an analogy to human behavior. For example, x,
y, and z could be measures of skin conductance (or any other
quantity) of three members of a group that work together, and
each member’s level of skin conductance at a certain time is
not only determined by their idiosyncratic history, but also by
interactions with the other members (i.e., future values of x do
not only depend on past values of x, but also on past values of y),
perhaps capturing changes of joint arousal within groups (e.g.,
Mønster et al., 2016).

We resort to this artificial system for illustrational
purposes, because it is a classic example for the behavior of
a multidimensional system whose component-behaviors are
interdependent, but whose properties are known. However,
we will summarize the specific challenges of empirical data
for each of the analyses presented later on in a section of
pitfalls and issues. To generate a sequence of data points of the
Lorenz-system dynamics, we use the lorenz()-function from the
‘nonlinearTseries’ package and store them in an arbitrary variable
lorData (see Figures 2A–D for the resulting 3D Lorenz attractor
and its component time-series):

lorData <− lorenz(time = seq(0, 20, by = 0.02),

do.plot = F)

To generate the particular dynamics, the parameters sigma,
rho, and beta have to be set, which we use here in their default-
settings of the lorenz()-function (σ = 10; ρ = 28; β = 8/3).
These three time-series will allow us to explore different levels
of dynamics, e.g., between pairs of time-series (dyad-level
dynamics) and triads of time-series (group-level dynamics in the
Lorenz-system).

PHASE-SPACE RECONSTRUCTION AND
PARAMETER ESTIMATION

As we said above, recurrence-based analyses are effectively
generalized correlational analyses that provide information about
different correlational characteristics of two or more time-series.
As such, all of the analyses we present in the following can simply
be run on the raw data of the time-series as they have been
collected. Alternatively, these analyses can be used to compute
correlations between the (reconstructed) phase-spaces dynamics
of the time-series of interest. In a nutshell, using the logic of
Takens (1981) theorem, it is possible to recover higher-order
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dynamics by the method of time delayed embedding of the
time-series (Takens, 1981). If one suspects that there are more
complicated dynamics behind the observed time-series, which is
often the case when the measured variable is continuous, one
needs to follow the embedding procedure outlined below to
reconstruct the time-series’ phase-space, the first step of which
is the estimation of the embedding parameters. In many other
cases though, especially when time-series represent categorically
coded behaviors (often the only kind of data available in
the psychological and social sciences) or derivative measures
(e.g., inter-event intervals), embedding may be unwarranted or
unjustified from a theoretical point of view. In those case, we can
still take advantage of the signal analysis capacities of recurrence
based methods, by proceeding without any embedding of the
observed time-series.

The estimation procedure for the embedding parameters
is basically the same for all of the following recurrence-
based analyses. The parameters are the embedding dimensions
m, the delay d, the radius r, and the rescaling norm. The
parameters m and d are necessary in order to estimate the correct
dimensionality of the dynamics of a time-series. The parameter
r is important to account for the fact that interval-scaled
and empirically measured time-series usually contain noise,
and never perfectly repeat themselves. Finally, the parameter
norm standardize the analyzed time-series so that they are of
comparable magnitudes. These parameter will later be used as
inputs (in addition to the time-series data) for the recurrence
analysis functions described below, which estimate coupling
between time-series.

The embedding dimension m is an estimate of the
dimensionality of the dynamics of the time-series – that is,
how many latent variables, if any, compose the system whose
dynamics are observed. For example, the Lorenz system
presented in Figure 2A is 3-dimensional, but if we had only data

from one of its dimensions available, we would need to estimate
the number of the dimensions that we have not measured. The
delay parameter d helps to recover latent dimensions using the
method of time-delayed embedding that will be described below
in more detail. Basically, d takes into account the sampling
properties of a time-series, and helps to find points in the time-
series that can be used to re-construct the missing dimensions
most reliably. The radius parameter r effectively specifies the
interval within which two values are counted as being recurrent,
which is needed for interval-scaled data, that usually never
repeats itself perfectly and contains measurement noise. The
norm parameter is helpful for comparing different time-series
with regard to their sequential structure, but that differ in the
magnitude of their values. The norm parameter effectively brings
the magnitude of the values of different time-series on the same
scale, so that recurrence variables such as %REC and %DET are
solely dependent on sequential properties, and not on differences
in magnitude.

The necessity for selecting these parameters is easier to
grasp from the perspective of basic RQA (one-variate recurrence
analysis), where the aim is to quantify the recurrence structure of
a single time-series, and not shared recurrences between multiple
time-series (where these parameters are needed nevertheless).
In that situation, we only have a 1-dimensional observable
from a potentially multi-dimensional system – for example, the
x-dimension from the Lorenz attractor (see Figure 2B). We
could run recurrence-analysis just on the raw values of this time-
series to describe its recurrence properties. However, since this
1-dimensional time-series comes from a 3-dimensional system
of interacting and inter-dependent variables, its recurrence
properties would be more accurately described if we could
take the dynamics of the other two dimensions into account –
and the procedure of phase-space reconstruction allows to do
this.

FIGURE 2 | Display of the data. 3D-plot (a.k.a. phase-space) of the Lorenz system (A); component time-series for the x, y, and z-axis of the Lorenz system (B–D).
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In the case of the Lorenz system, we know that the actual
system dynamics “live” in a 3-dimensional phase-space, and
not in the 1-dimensional space of variable x taken alone. The
phase-space is a multidimensional picture of the 1-dimensional
time-series, obtained by plotting the values of the 1-dimensional
time-series against each other at a certain delay. In a seminal
paper, Takens (1981) showed that it is possible to reconstruct the
missing information from the other, non-observed dimensions
(in our case dimensions y and z from the Lorenz system). In
particular, Takens showed that this missing information can be
recovered via the method of time-delayed embedding (see also
Sauer et al., 1991; Kennel et al., 1992).

The idea behind this so-called phase-space reconstruction
with the method of time-delayed embedding is not complicated:
If we only have a 1-dimensional time-series, and want to
recover the time-series (or trajectory) in its multi-dimensional
phase-space, we use m−1 surrogate copies of the original time-
series, sampled at lag d from each other (where d is the
delay parameter) to derive the coordinates for every point of
such trajectory. The resulting multi-dimensional scatterplot-like
graph will approximate the topological dynamics of the actual
multidimensional system (see Figures 3A,B for an example using
the x-dimension of the Lorenz attractor), meaning that a properly
embedded version of a 1-dimensional time-series in phase-space
looks similar to the “true,” multidimensional trajectory.

As we will see, this logic is applicable to all of the analyses
techniques presented in this paper. However, one can only
safely rely on an established routine to do so for CRQA (and
hence DCRP), which operate on the basis of individual time-
series, while the issue of embedding is more complicated – and
perhaps not always warranted – in the case of MdRQA (this
will be discussed in the section “ Multidimensional Recurrence
Quantification Analysis” below).

The problem with empirical data is, that we usually do
not know the dimensionality of the source system a priori.
Hence, the dimensionality of the system has to be estimated,
as well as the delay parameter that is needed to properly re-
construct the systems phase-space. However, two methods have
been proposed to estimate those parameters. To estimate the
delay parameter, the average mutual information function (AMI)
of the component time-series can be computed, and usually
its first local minimum is taken to be a good estimate of the
delay parameter d (for a detailed rationale of this choice see
Abarbanel, 1996). Specifically, the first local minimum provides
the lag where the time-series is most independent of itself, and
embedding at this point will provide the most unique information
for a new dimension in phase-space. In R, this can be done
using the mutual()-function from the ‘tseriesChaos’ package,
which we now want to apply to the x-dimension of the Lorenz
system:

mutual(lorData$x, lag.max = 50)

Here, we chose to compute average mutual information for
the first 50 lags of the time-series. As can be seen in Figure 3C,
mutual information drops off, with a local minimum at about lag
9, after which mutual information increases again. Hence, 9 is our

estimated value for the delay parameter d. Note that in our case,
much less than 50 lags would have been needed to find the first
local minimum. However, sometimes no clear local minimum is
visible within a certain range of lags, in which case it is usually
helpful to re-run the AMI function with a higher lag (i.e., set
lag.max to a larger value).

Now, we know the delay that we need for the embedding
process, d = 9. However, we do not yet know the dimensionality
of our phase-space, that is how many times to apply the delay.
The embedding dimension of a time-series can be estimated
using the false-nearest-neighbor function (Kennel, et al., 1992).
The idea behind this estimation procedure is, that if a time-
series is not properly embedded with regard to the “true”
dimensionality of its dynamics, values in the time-series are
classified as similar/recurrent that should actually be treated
as non-recurrent (i.e., they are “false” neighbors). As a rule
of thumb, high levels of noise in the data tend to inflate the
estimate of the embedding dimension m. Now, we want to use the
false.nearest()-function (from the same R package) to estimate the
embedding dimension m:

plot(false·nearest(lorData$x, m = 10, d = 9, t = 0))

As input, the function takes m for the range of dimensions
that we want to test, d for the delay parameter that we have
estimated previously, and t for the so-called Theiler window
(Marwan et al., 2007) that allows to specify the minimal
(temporal) separation of neighbors. Effectively, t specifies the
number of diagonals on a recurrence plot whose recurrence
points are excluded for the computation of the recurrence
measures, with t = 1 meaning that recurrence points at the
main diagonal are excluded, t = 2 meaning that recurrence
points at the two adjacent diagonals above and below the
main diagonal are excluded, and so forth (see Marwan et al.,
2007, p. 250, for a more extensive discussion). Similar to the
AMI function, we look for a first local minimum and/or for
a leveling-off in false-nearest-neighbors (see Figure 3D), where
additional embedding dimensions do not appreciably change
this number (similar to the scree-test in factor analysis –
Cattell, 1966). The FNN-function is used because in a non-
optimal reconstruction of the phase-space points (coordinates)
can appear to be recurrent when in fact they are not, which
would be visible in a higher dimensional phase space. Hence
the name “false neighbors.” As can be seen in the plot,
we observe only significant portions of false neighbors for
embedding dimensions up to 2. Hence, 3 is our estimate for
the embedding dimension parameter m, as it should be, because
the Lorenz system actually is 3-dimensional (see Figure 2 and
equation 1).

To sum up, plotting the data in lorData$x three times against
each other with delay 9, will result in the reconstructed phase-
space for the Lorenz system as in Figure 3B. That means, we take
the original time-series, and plot it against itself two additional
(i.e., m−1) times, where the second time the data points are
shifted by 9 lags (i.e., 1∗d ), starting with the 10th data point of
the original time-series, and the third time the data points are
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FIGURE 3 | Phase-space reconstruction and estimation of embedding parameters. Example of phase-space reconstruction via the method of time-delayed
embedding using the x-dimension of the Lorenz attractor. To that end, the original series (A) is plotted against itself at a certain delay d (d = 9 in this case; see panel
D and the main text). This is done m–1 times, where m–1 is the number of additional surrogate dimensions needed in order to arrive at the correct dimensionality of
the source system. Then, the original time-series and its two surrogates are plotted against each other, resulting in a reconstructed phase-space (B), which is
topologically isomorphic to the phase-space of the actual source system (see Figure 2A). The delay parameter d can be estimated using the average mutual
information (AMI), where the first local minimum of that function provides a good estimate for d (C), and the embedding parameter m can be estimated using the
false nearest-neighbor (FNN) function, where the first local minimum (or the point at which the function becomes stable) provides a good estimate for m (D).

shifted by 18 lags (i.e., 2∗d), starting with the 19th data point of
the original time-series.

However, we are interested in recurrences of the same time-
series in phase-space, and to quantify those, we can move
from the phase-space representation to the recurrence plot
representation of the time-series. In order to do so, we need
to determine which values in the reconstructed phase-space are
recurring. For nominal sequences and for simple deterministic

systems that is no problem, but for time-series with complex
dynamics and stochastic components and/or measurement noise,
we need to threshold the phase-space first.

Thresholding means, that we define a range, the radius
parameter r, within which we take two coordinates in phase-
space to be recurrent – even if their values are not identical.
However, a proper value for the radius parameter r cannot be
estimated so easily. As said above, we do not need a radius for
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nominal sequences (or effectively we set the radius close to zero),
because here we just consider repetitions of the same states or
values. In fact, nominal sequences are the only kind of data that as
something like a natural level of recurrence, because by selecting
a tiny value for the radius, we allow only truly identical values
to be counted as recurrent, with everything else being classified
as non-recurrent. For all other kinds of data, recurrence (%REC)
depends on the selection of r.

For highly deterministic time-series, small radii will suffice,
while highly stochastic time-series or time-series with a strong
noise component need big radii to count sufficient recurrences. In
general, recommendations have been to set the radius r so that the
resulting recurrence rate lies between %REC = 1 to 5% (see e.g.,
Webber and Zbilut, 2005), where it can be on the lower side of this
estimate for time-series with a strong deterministic component,
and on the upper side of this estimate for time-series with a strong
stochastic component. However, very stochastic time-series (such
as inter-event-times) might even warrant recurrence rates higher
than that (Wallot et al., 2012). Radii are usually expressed in
terms of their percentage of the norm parameter, or in terms
of the standard deviation of the time-series when the input
time-seris were standardized. Note that additional constraints are
put on the selection of the radius in the context of comparing
samples of data sets, which we will discuss at the very end of the
paper.

Finally, a norm parameter needs to be set. The norm
parameter is important for re-scaling phase-spaces of different
time-series with regard to the magnitude of their values. This
is, because we are interested in comparing different time-
series in terms of their sequential properties, and differences in
magnitude between two series could influence the estimation of
their sequential similarities or differences (e.g., Shockley, 2005).
Several norms have been proposed, for example normalizing the
phase-space by the (average) Euclidean, Maximum, or Minimum
distance in phase-space. Given circumstances, the choice of
one norm can be an advantage over choosing another one,
but the main point is to keep the norm parameter constant
across all time-series that are analyzed to be compared across
samples.

Conducting estimation of the delay and embedding dimension
parameters using the mutual()- and false.nearest()-functions for

TABLE 2 | Delay (d) and embedding dimensions (m) estimated for the six
time-series.

Time-series d M

lorData$x 9 3

lorData$y 8 4

lorData$z 8 4

The above values were simply selected according to a strict application of the first-
local-minimum criterion. In case of doubt, one can test whether other reasonable
delays lead to markedly different outcomes. Note that the false.nearest()-function in
R suggests that y- and z-coordinate data come from a 4-dimensional system, even
though we know that the actual system is 3-dimensional. However, such minor
differences usually do not matter for the results. In fact, building a recurrence plot
on a 3 vs. 4-dimensional phase-space will leads to very similar results, and as a rule
of thumb, it is advisable to slightly over-embed (i.e., pick an embedding dimension
slightly higher than the estimate) when in doubt.

our three time-series from the Lorenz-system leads to the results
presented in Table 2, which we will need as inputs for the analyses
that we are going to introduce in the next sections. Figure 4
summarizes the main steps of selecting and conducting the
analyses. For details and solution for specific problems, consult
the relevant sections of this article.

PITFALLS AND ISSUES

The presence of noise in a time-series can inflate estimates
of embedding dimension using the false-nearest-neighbor
algorithm. On the one hand, this is not very problematic, because
moderately over-embedding a time-series (i.e., picking higher
values for m than the actual dimensionality of the dynamics of
the system from which the time-series was recorded) usually
does not impact the results of recurrence-based measures very
much, and the analyses are generally robust across a certain
range of parameter settings. Alternatively, one can carefully
smooth the time-series before estimation embedding dimension.
However, even in this case, one might still want to do the
first analyses on the unsmoothed data, because correlated noise
properties can actually contain information about the time-
series dynamics, and recurrence-based analysis can harness such
information.

Finally, there are data sets for which no clear local minimum
in either the AMI and/or the false-nearest-neighbor function
are observed. In this case, one can pick values for d and
m when the functions level out. Often, however, this means
having relatively high values for d and m, and because large
embedding parameters actually reduce the number of data points
available for analysis, one needs time-series with sufficiently
many data points. Alternatively, lower values for d and m
can be picked by investigating the function for instances for
“substantial decreases” instead of straight local minima or
leveling. Of course, selecting parameters on this basis will increase
the subjective component in parameter setting, and one way
to deal with this would be an exploration of the parameter
space. Here, one selects a handful of different parameter
combination based on the different criteria presented above,
and check whether the results of the analysis are invariant
or at least similar across these. In general, picking smaller
values for d and m results in more and/or “false” recurrences,
while picking bigger values of d and m results in fewer
recurrences. However, picking slightly higher values, particularly
for m, will still result in reliable and correct classification of
recurrences.

CROSS-RECURRENCE
QUANTIFICATION ANALYSIS (CRQA)

Cross-recurrence quantification analysis is a bivariate correlation
technique. Instead of quantifying recurrences within a time-series
(as RQA does), CRQA quantifies cross-recurrences between two
time-series. This bivariate extension of RQA is conceptually
pretty straightforward: Instead of embedding a single time-series
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Use recurrence analysis on observed or em bedded data?

Estim ate param eters

Delay param eter d
Use first local mimimum of AMI function
as estimate for d .

Em bedding param eter m
Use first local minimum of FNN-function –
or point at which FNN-function becomes
stable – as estimate for m .

Radius param eter r
Start with an arbitrary value for r, run
recurrence analysis, obtain average % REC
for sample, and adjust r as needed to
obtain a target average value for % REC .
Alternatively, % REC can be set to a fixed
value by assigning each pair/group of
time-series an individual radius
parameter.
For nominal data, set r to a tiny value
close to zero.

Set param eters

Delay param eter d
d = 1.

Em bedding param eter m
m = 1.

Radius parameter r
Start with an arbitrary value for r, run
recurrence analysis, obtain average % REC
for sample, and adjust r as needed to
obtain a target average value for % REC .
Alternatively, % REC can be set to a fixed
value by assigning each pair/group of
time-series an individual radius
parameter.
For nominal data, set r to a tiny value
close to zero.

Phase-space norm alization norm
Most importantly, select a norm and keep
it constant across all time-series.

Phase-space norm alization norm
Most importantly, select a norm and keep
it constant across all time-series.

If necessary, generate surrogate data for com parison with the original data using
the same param eters.Then get results for all pairs/groups of tim e-series and subm it

to inferential statistics!

W hat kind of data do you w ant to analyze and what is your research question?

CRQA DCRP M dRQA

M ake sure that each paired/grouped set of
tim e-series has equal number of data points!

Coupling between two time-
series (pairs/dyads)?

Coherence/coupling
between n > 2 time-series

(groups) or analysis of
different group-levels?

...on observed/raw data... ...on embedded data...

Step 1

Step 2

Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Leader-follower
relationships between two
time-series (pairs/dyads)?

FIGURE 4 | Main steps of selecting and conducting the analyses. Please note that this is only a gross overview over the main steps – for specific problems, best
practice, or tuning of parameters, please consult the respective sections on these steps in this article.
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in a phase-space (see Figure 3), two time-series are embedded
in the same phase-space (see schematic in Figure 5A). Note that
the numbers next to the two time-series indicate the order in
which the data points (coordinates) have been measured, not the
values of the data points! The data are arbitrary, and are meant to
illustrate how embedded time-series in a phase-space are used to
construct a cross-recurrence plot (CRP).

Now, the cross-recurrence plot is constructed by charting
instances where coordinates of the two time-series occur close to
each other in the phase-space – again within a given radius size
r (Figure 5B). This cross-recurrence plot can now be quantified
in the same fashion as the simple recurrence plot (see Table 1).
Note, however, that the cross-recurrence plot for two different
time-series does not necessarily possess recurrences at the central
diagonal, and is not symmetric about the diagonal anymore.
We can make use of this asymmetry to assess lead-follower
relationship or lags in coupling when examining the diagonal
cross-recurrence profile, which is done in the next section.

Also note, that the cross-recurrence plot, similar to the
recurrence plot, charts recurrences at all possible lags for the two
time-series. Hence, the cross-recurrence measures do not reflect
coupling at a specific lag or within a specific time-interval only.

The sequence of steps for conducting CRQA is very similar
to that of RQA: First, the AMI and the false-nearest-neighbor
function are used to estimate the delay and embedding dimension
parameters for each time-series separately. If the time-series
exhibit the same delay and dimension, then those parameters
are used for CRQA. If the time-series differ in delay and
dimension, then one can use either the average values for each
parameter (rounded to the next integer), or the highest values
for each parameter – delay d and embedding dimension m.
Again, as a rule of thumb, over-embedding is less problematic
compared to under-embedding (Webber and Zbilut, 2005) –
given enough data points, of course. Then, appropriate norm and

radius parameters r need to be selected, and usually the data are
normalized beforehand (e.g., z-scored, or transformed to unit
interval), to ensure that CRQA measures are really based on
sequential similarity of the two time-series, and not differences
in magnitude (Shockley, 2005).

RUNNING THE ANALYSIS IN R

As we have already estimated embedding parameters d and m for
our time-series (see Table 2), we can skip this step and directly
proceed to the application of the crqa()-function from the ‘crqa’
package in R. To begin with, we will perform CRQA on the same
time-series – that is, on lorData$z and lorData$z – so two time-
series with the same values (see Box 1).

The crqa()-function has several arguments to be defined: ts1
and ts2 are the two time-series that should be analyzed; delay
is the delay parameter d, embed is the embedding dimension m,
rescale is the norm parameter used to rescale the phase-space (2
equals maximum rescaling), and radius is the radius parameter
r. The parameter normalize is an option to normalize the data
beforehand (2 equals z-scoring). The parameters mindiagline and
minvertline allow the user to select the minimum number of
diagonally and vertically adjacent points that should go into the

BOX 1 | Running CRQA.
crqa_results_ab <– crqa(ts1 = lorData$z, ts2 = lorData$z, delay = 9,
embed = 3, rescale = 2, radius = 20, normalize = 2, mindiagline = 2,
minvertline = 2, tw = 0, whiteline = FALSE, recpt = FALSE,
side = "both") # running crqa

image(crqa_results_ab$RP) # cross-recurrence plot

print(crqa_results_ab[1:9]) # crqa results

FIGURE 5 | Schematic of embedding two time-series in a single phase-space (A), and charting cross-recurrence between coordinates of the two time-series in a
cross-recurrence plot (B). Note that the indices on the x- and y-coordinates in panel B here do not display the values of the associated time-series, but the order in
which these values appear in the time-series (i.e., the gray 10 is the 10th coordinate of the gray coordinate-series in the phase-space in panel A).
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FIGURE 6 | Doing recurrence analysis using cross-recurrence: Display of cross-recurrence plots resulting when the same time-series data (lorData$z) is added for
both inputs as plotted directly from the output of the crqa()-function (A). However, recurrence plots are conventionally oriented so that time at lag0 runs along the
main diagonal from the lower-left to the upper-right. Hence, the resulting cross-recurrence plot need to be rotated by 90◦ (B).

calculation of the recurrence metrics (the default being 2, i.e., any
point that is not isolated is counted as a line). tw is the Theiler
window (see section “Parameter Estimation”). Interested readers
are referred to the article by Coco and Dale (2014), as well as the
description of the crqa()-function in the ‘crqa’ package.

Figure 6A displays the resulting cross-recurrence plot. First
of all, notice that when plotting the resulting recurrence plots
using the image()-function in R, the recurrence plots are rotated
in conventional matrix orientation, where the smallest values
of the indices begin at the upper-left. Hence, time in this plot
now runs from the upper left to the lower right (instead of the
conventionally used direction from lower left to upper right –
which we have used in Figures 1, 5B). This is important to pay
attention to, because in different publications, different ways to
display recurrence plots are chosen in this regard. This can be
remediated by transposing the matrix with the t()-function on
the reversed columns of the matrix before plotting, resulting in
the conventional orientation where time at lag0 now runs again
from the lower-left to the upper-right (see Figure 6B):

RP <− crqa_results_ab$RP # store cross-recurrence plot in

variable RP image(t(RP[, ncol(RP) : 1])) # rotate matrix

by 90◦ and plot

What we have done here was effectively to compute RQA (i.e.,
an analysis of the auto-recurrence properties of a single time-
series) using CRQA, because we entered the same time-series
twice. Hence, we observe the central diagonal on the plot, and
see that the plot is symmetrical about this diagonal. If these were
two independently collected time-series, it would mean that they
are perfectly synchronized, exhibiting the same dynamics at the
same time.

Finally, we will run three pairwise analyses of the time-series
lorData$x, lorData$y, and lorData$z (see Box 2). The results
are displayed in Figure 7. Comparing the cross-recurrence plots
of the three pairings, we see that they do not quite exhibit

BOX 2 | Running all pairwise CRQAs for the three dimensions of the Lorenz
system.
crqa_results_xy <– crqa(ts1 = lorData$x, ts2 = lorData$y, delay = 9,
embed = 4, rescale = 2, radius = 20, normalize = 2, mindiagline = 2,
minvertline = 2, tw = 0, whiteline = FALSE, recpt = FALSE,
side = "both") # running crqa between the x and y dimensions of the
Lorenz system

crqa_results_xz <– crqa(ts1 = lorData$x, ts2 = lorData$z, delay = 9,
embed = 4, rescale = 2, radius = 20, normalize = 2, mindiagline = 2,
minvertline = 2, tw = 0, whiteline = FALSE, recpt = FALSE,
side = "both") # running crqa between the x and z dimensions of the
Lorenz system

crqa_results_yz <– crqa(ts1 = lorData$y, ts2 = lorData$z, delay = 9,
embed = 4, rescale = 2, radius = 20, normalize = 2, mindiagline = 2,
minvertline = 2, tw = 0, whiteline = FALSE, recpt = FALSE,
side = "both") # running crqa between the y and z dimensions of the
Lorenz system

the same patterns, but all of them seem to consist of relatively
grouped or connected recurrent points. Examining the CRQA
results corroborates this: All three pairs have high values of cross-
%DET, meaning that cross-recurrences do not occur in isolation,
but in connected groups. Still, for some of the CRQA outcome
measures, the numbers differ substantially between pairs. This
shows, that the three dimensions of the Lorenz-system do not
possess that same intrinsic dynamics, and are not all coupled
together in the same way. Here, we will see that it can be useful
to examine multiple time-series together as in multidimensional
recurrence analysis, which will introduce in the section after the
next one.

PITFALLS AND ISSUES

As all correlational techniques, CRQA (and also DCRP and
MdRQA) need two matched time-series. If time-stamps of
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FIGURE 7 | Display of cross-recurrence plots and resulting CRQA measures the time-series pairs lorData$x with lorData$y (A), lorData$x with lorData$z (B), and
lorData$y with lorData$z (C).

the recordings are synchronized, and time-series are sampled
continuously, this is no problem. However, if the time-series
are sampled as inter-event-times (such as recording heart rate
as beat-to-beat intervals, response times, or iterated maps), two
synchronously recorded time-series can be of different length.
This can be fixed by transforming the time-series into a pseudo-
continuously sampled series using time-normalization methods.
However, the fluctuations in the original inter-event series can get
smoothed-out in the process, which is undesirable, because these
fluctuations might contain actual information that recurrence-
based techniques can uncover. Hence, when transforming inter-
event to pseudo-continuous time-series for the purposes of
subjecting them to CRQA, one should pick a high re-sampling
rate at a relatively small window, because this will result in higher
accuracy of CRQA results (Wallot et al., 2013).

Another issue concerns the question of whether or how to
normalize the individual time-series before submitting them to
CRQA. If the values of the time-series have similar distribution
and magnitude of values, then normalization should not make
much of a difference. If they do, then it is helpful to normalize
each time-series to ensure that the CRQA results are really a
property of the sequential order of data points in the time-
series, and not due to differences in magnitude. However, extreme
outliers of extreme differences in distributions (especially if
one of them possesses a strong heavy tail) may result in
the normalization procedure to introduce uncertainty into
the CRQA results instead of reducing it. Recurrence-based
procedures themselves are extremely robust against outliers,
but this is not true for certain normalization procedure, since,
for example, z-scoring a time-series with one or few extreme
outliers results in “squeezing” the remaining mass of the data
points together. Here, either removing and replacing individual
data points can be warranted (if they are very few), or
otherwise normalizing data based on percentiles. In the particular
case where the two time-series have similar distributions and

magnitudes of values, but one of them contains outliers, an option
would be not to normalize the data before the analysis but center
the variables (see e.g., Shockley, 2005, p. 163).

However, even under those circumstances, CRQA is relatively
robust, you can try this out by entering two time-series that differ
in magnitude into the analysis with and without normalization.
Given some adjustment of the radius parameter to yield some
sufficient level or cross-recurrence points, the cross-recurrence
plot should still look similar under both circumstances, and also
the other CRQA results should be in the same ball park.

Finally, sometimes it is hard to evaluate whether CRQA results
are indicative of substantial coupling between time-series, or
how strong this coupling is. After all, by choosing a sufficiently
high value for the radius parameter r, one can even make
two random number sequences yield cross-recurrences (even
though they look like homogenously distributed isolated cross-
recurrence points). There are two procedures that have been
suggested to obtain base-line measures of cross-recurrences. First
of all, one can randomly shuffle both time-series (to do this,
use for example the R function sample(), which returns shuffled
values of its input variable) and then do CRQA with the same
parameters of the original time-series. This assesses, how far the
two time-series exhibits coupling above chance. Another way is
to calculate and average the individual recurrence properties for
each time-series, and use this number as a reference point. This
tells one how well the two time-series correlate, given that each of
the two component time-series possess some dynamic structure
that might influence the CRQA results. Here, however, keep in
mind that recurrence analysis results of individual time-series –
everything else equal – are numerically higher than the cross-
recurrence results. So, the question is, how well the CRQA results
approach the average recurrence properties of the individual
time-series, which do set some upper limit on cross-recurrence.
If one deals with multiple samples (e.g., multiple dyads that
perform different tasks), one can also create false-pairs to evaluate
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coupling strength, and we will come back to this procedure at the
end when addressing pitfalls and issues of DCRP.

DIAGONAL CROSS-RECURRENCE
PROFILE (DCRP) ANALYSIS

After introducing cross-recurrence plots, we can now consider
DCRP analysis (Richardson and Dale, 2005; Dale et al., 2011a,b)
as a kind of follow-up analysis of the cross-recurrence plot.
Instead of quantifying the whole cross-recurrence plot of two
time-series, we restrict ourselves to only one measure (%REC)
and to a limited band around the Line of Synchrony (LoS), the
main diagonal of the plot (which usually spans the plot from
the lower left corner to the upper right one). In principle other
diagonal recurrence variables could be computed as well (such
as %DET or ADL for each diagonal), but applications of these
measures in DCRP-analysis have been sparse so far.

As we already mentioned in previous sections, the main
diagonal in a cross-recurrence plot is special, because it captures
recurrences between the two time-series at the very same time-
stamp (lag 0), hence the name LoS. So, if the two time-series have
equal or similar values (i.e., within the selected radius) at the same
time-stamp, a recurrence point will be charted on the LoS, and
this is why, for example, in RQA the main diagonal is always filled
with recurrence points: a time-series is necessarily equal to itself
at lag0.

When the time-series come from different, possibly coupled
systems, the main diagonal will not always contain recurrences
and the cross-recurrences will be asymmetrical distributed
around it. The distribution of recurrence points around the
diagonal could then indicate that some values from one time-
series are followed by the same values in the other – if one of
them leads and the other follows with a given lag or range of lags.

We can then compute the relative amount of recurrence
points, i.e., %REC, falling on a limitited set of diagonals (i.e., a
limited number of lags) in a window centered at lag 0, which
corresponds to the LoS. In this way, we can consider how
recurrences are distributed across the set of lags chosen. The
DCRPs are then the graphical representation of the amount of
recurrence as a function of the lags. Figure 8 illustrates the
relationship between the cross-recurrence plot and the diagonal
recurrence profile that can be computed around the LoS.

RUNNING THE ANALYSIS IN R

The core function to perform DCRP in R is to be found
in the package ‘crqa’ (Coco and Dale, 2014), and is called
drpdfromts(). The main focus of the whole package is on cross-
recurrence analysis, which is an advancement relative to other
non-linear time-series packages in R, but its application is
also slightly biased toward categorical (nominal) time-series.
Although, the drpdfromts()-function provides the option of
choosing continuous input time-series, it is not possible to
overrule the predefined settings of embedding (m) and delay
(d) for the categorical case (m = d = 1). So, even though we

already estimated that the adequate embedding for our data is
m = 4 and the adequate value of delay is d = 9, we will have to
perform our DCRP analysis on those data with no embedding
and delay (i.e., both equal to 1). But first it is necessary to
normalize the data to make the fluctuations comparable in phase
space, since this option will also not be given by the drpdfromts()-
function. Then, we can run the main analysis on the normalized
data and save the results in appropriately named objects (see
Box 3).

The arguments we need to provide to the function are the two
time-series we are analyzing (t1 and t2); a value for the window
size or the number of lags to compute around the LoS (ws; this
value is the number lags on each side of the LoS, which in this
example gives a total number 41 lags – 20 on each side of the LoS,
plus the LoS itself, which is lag0); Hence, by setting the window
size, one specifies the time interval within which one wants to
compute time-lagged recurrences. Furthermore, one needs to set
the type of the data (“categorical” or “continuous,” even though
this choice is of no practical implications in the current version of
the function); and finally the value of the radius, expressed in the
same units as the time-series (z-scores in this case). The particular
choice of radius in this case was guided by the principle of keeping
the %REC value in the resulting recurrence plot at a relatively low
level, here about 2.5%.

The following code will create the three plots of the profiles for
the above analyses.

plot(−20 : 20, dcrp_results_xy$profile, type = “l′′, xlab

= “Lag′′, ylab = “%REC′′)

plot(−20 : 20, dcrp_results_xz$profile, type = “l′′, xlab

= “Lag′′, ylab = “%REC′′)

plot(−20 : 20, dcrp_results_yz$profile, type = “l′′, xlab

= “Lag′′, ylab = “%REC′′)

Figure 9 shows the profiles for the three bivariate analyses.
Table 3 shows the results outputted by the function, that is the
value of maximal recurrence and at which lag it specifically occurs
(Note: this value is to be read as the index in the vector going
from −ws to +ws, and hence it needs to be translated in the
appropriate, real time lag which is application specific).

When eyeballing the profiles, we search for peaks emerging
from a more uniformly distributed recurrence line. In this case
a clear peak is evident in all the panels of Figure 9. In the cross-
recurrence analysis of dimensions x and y of the Lorenz system
(Figure 9A) the peak reaches its maximum value at about lag
+3 (the 24th value of the profile’s vector, see Table 3) which
means – given the order we entered the two time-series in the
drpdfromts()-function – that x is consistently lagging behind y
by 3 time steps. In other words, values of the y time-series
recur with a lag of 3 within the x time-series (look also at
Figures 2B,C). In the other plots, we also see a clear peak at lag
−1 for time-series x and z (Figure 9B), meaning these two time-
series are almost perfectly synchronized in their fluctuations (see
also Figures 2B–D), while the peak is at a more negative lag (−4)
for time-series y and z (Figure 9C), meaning in this case that z
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FIGURE 8 | Illustration of how to compute a diagonal recurrence profile from a cross-recurrence plot. The solid black line on the tilted cross-recurrence plot marks
the LoS. The dotted black and red lines show the width of lags ±5 and ±10 around the LoS, respectively. The line graph in the back of the figure illustrates the
summation of recurrence points for the lags – the diagonal cross-recurrent profile.

BOX 3 | Data preparation and running DCRP on the three possible pairing of
the dimensions of the Lorenz system.
lorDataz <– as.data.frame(lorData[2:4]) # transform the Lorenz data in a
data.frame

lorDataz <– as.data.frame(scale(lorDataz)) # normalize the three variables
keeping the data.frame format

dcrp_results_xy <– drpdfromts(t1 = lorDataz$x, t2 = lorDataz$y, ws = 20,
datatype = “continuous”, radius = 0.05) # run DCRP on the x and y dimension
of the Lorenz system

dcrp_results_xz <– drpdfromts(t1 = lorDataz$x, t2 = lorDataz$z, ws = 20,
datatype = “continuous”, radius = 0.05) # run DCRP on the x and z dimension
of the Lorenz system

dcrp_results_yz <– drpdfromts(t1 = lorDataz$y, t2 = lorDataz$z, ws = 20,
datatype = “continuous”, radius = 0.05) # run DCRP on the y and z dimension
of the Lorenz system

is lagging behind y of four time steps. In both cases the amount
of maximum recurrence is considerably lower than in Figure 9A.
which is understandable given the different type of oscillation of
time-series z compared to the other two (see Figures 2B–D).

If we want to compute the recurrence profiles for embedded
time-series, we will have to compute the cross-recurrence plot
with proper embedding first, and then use the following routine
to compute the profile from that plot (see Box 4). Here, we use
the crqa()-function with the estimated embedding parameters
and calculate the recurrence profile around ±20 lags around the
LoS. The results are plotted in Figure 10. Comparing Figure 9A
with Figure 10, we see that both, the non-embedded and the

embedded version suggest a lag of +3, even though we see a
maximum of recurrence points across multiple lags in Figure 10.
This, however, is also a function of the comparatively higher value
that we picked for the radius parameter.

PITFALLS AND ISSUES

As already pointed out, the function available in R to compute
DRCPs was specifically intended to analyze categorical time-
series. Hence, when time-series are categorical, some cross-
recurrence analysis parameters are set by default, usually m = 1,
d = 1, and r = 0, when using function drpdfromts(). It is important
to be aware of this limitation when running our analysis or
alternatively use the code provided in Box 4 for the computation
of continuous and embedded data.

A few problems specific to this analysis have to do with the
evaluation of the profiles. The most important one concerns the
relevance of the points of maxima (and minima) in the profile,
indicating a concentration of recurrence (or some particularly
low level of it) across a certain range of lags. In general, a
maximum is always present in the profile we obtain, so the
question is whether the amount of recurrence at this lag (or set
of lags) is indicative of a real lag-dependent coordination in the
two time-series or whether it is no different from the amount
of recurrence we see at other lags. In other words, we need a
reference point against which to compare the peaks and valleys
in the profile.

This reference point has usually been found in a recurrence
baseline, which is an additional profile we can plot alongside
the original one. A few different methods have been proposed
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FIGURE 9 | Recurrence profiles of the pairwise cross-recurrence analyses of
the 1-dimensional x-y-z time-series from the Lorenz system. Plot of
drcp_xy$profile (negative lags = y lagging behind) (A). Plot of drcp_xz$profile
(negative lags = z lagging behind) (B). Plot of drcp_yz$profile (negative
lags = z lagging behind) (C).

for the generation of baseline profiles. One proposal is
the creation of so-call false-pairs, extracting the diagonal-
wise profiles from a surrogate pair of time-series which
come from the same experimental condition, but different
participants. This would effectively eliminate the fine-grained

TABLE 3 | Output of the drpdfromts()-function.

dcrp_results_xy dcrp_results_xz dcrp_results_yz

maxrec 0.403 0.051 0.0522

maxlag 24 20 17

Apart from the profiles (shown in Figure 9), the function drpdfromts() usually
provides two other values as output, the maxrec, which is the value of recurrence
at the point of maximum in the profile, and the maxlag, or the index lag of the
point of maximum. In the table results for these two values are presented for the
analyses run.

BOX 4 | Computing DCRP for embedded data.
crqa_results_xy <– crqa(ts1 = lorData$x, ts2 = lorData$y, delay = 9,
embed = 4, rescale = 2, radius = 20, normalize = 2, mindiagline = 2,
minvertline = 2, tw = 0, whiteline = FALSE,
recpt = FALSE, side = "both") # compute cross-recurrence plot

diagLine <– split(crqa_results_xy$RP, row(crqa_results_xy$RP) -
col(crqa_results_xy$RP)) # sort CRP into diagonal lines

lags <– 20 # chose number of lags around LoS

recLag <– 0 # create variable to store recurrences at specific lags

for (i in seq(lags+round(length(diagLine)/2), -lags+round(length(diagLine)/2))) {
tempDiagLine <– unlist(diagLine[i])
recLag <– append(recLag, sum(tempDiagLine)/length(tempDiagLine))
} # loop through diagonal lines and calculate recurrences at each diagonale

plot(seq(-lags, lags), recLag[2:(lags∗2+2)], type = ’b’) # plot DCRP profile

time dependent coordination we would expect in coupled
systems without disrupting the actual, ordered nature of the
time-series themselves. Another more radical proposal is to
eliminate the ordered, sequential nature of the time-series by
shuffling them randomly and then run cross-recurrence analysis
on them, maybe even repeating the process several times to
finally take the averaged profile and confidence intervals from
these repetitions. In the case of categorical time-series, a similar
procedure would also be to shuffle the time-series without
‘breaking’ the chunks of equally coded events in which the
time-series is organized. As of now, it seems good practice to
compute both kinds of baslines in order to evaluate specific
parts of the DCRP. Moreover, there are other possibilities
to create surrogate series that retain specific moments of
the data and remove others, and can be used to test for
whether the presence of absence of these moments are driving
the observed effects (such as the iterative amplitude-adjusted
fourier-transformation, IAAFT – Schreiber and Schmitz, 1996).
However, one needs to carefully check what moments such
surrogates are manipulating in order to arrive at a proper
interpretation of the results.

We need also to underline the fact that the coupling in the
two time-series ought to be rather strongly time-locked, for it
to appear as a clear peak in the DRCP. In fact, if the time delay
between similar states in the two time-series is highly variable, the
recurrence will spread across several diagonal lines close to the
LoS and hence we could possibly fail to see a peak at any definite
lag. This might, however, be itself exactly the kind of information
that is of interest.

MULTIDIMENSIONAL RECURRENCE
QUANTIFICATION ANALYSIS (MdRQA)

Multidimensional recurrence quantification analysis is a
multivariate extension of simple RQA for multidimensional
time-series, and can be used to analyze the joint dynamics
of groups (n > 2) of participants (Wallot et al., 2016b).
The underlying idea of MdRQA is simple: Instead of using
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FIGURE 10 | Recurrence profiles of the pairwise cross-recurrence analyses of
the properly embedded time-series from the Lorenz system. Plot of the
diagonal cross-recurrence profile of lorData$x and lorData$y, with the
percentage of recurrence points plotted on the y-axis, and the number of lags
around the LoS on the x-axis.

a single 1-dimensional time-series that is embedded in
phase-space, one uses multiple recorded time-series that
are embedded in a phase-space. However, in contrast to
CRQA, it is not that each of these time-series is embedded
separately into one phase-space, but each time-series actually
provides one (or multiple – if the time-series is further
embedded via time-delayed copies) dimension of that
phase-space.

Consider the data from the Lorenz-system that we have
generated. We know that the system is 3-dimensional, and we
have a time-series that corresponds to the variation on each
dimension over time. However, we also know from our analysis of
these three time-series in CRQA that not all of the three possible
pairings yield the same results. Hence, correlating all dyadic
time-series does not properly reflect the system-level dynamics
of the Lorenz-system. Figure 11 displays the three phase-spaces

reconstructed from each dimension of the Lorenz system and the
3-dimensional original.

No matter whether one interprets the three variables as
a multidimensional behavior of one system, or the coupled
behavior of three individual systems, MdRQA makes it possible
to quantify such higher-level dynamics properly, by taking the
phase-space of multiple measures time-series as the point of
departure. Also, it allows to quantify the dynamics at different
grouping levels – for example a group of 4 participants which
act together in a task and where each participant provides
one observable can be analyzed in terms of six possible dyads
(MdRQA2) within this group, four possible triads (MdRQA3)
within the group, and one group-level containing all four
members (MdRQA4).

However, even though MdRQA offers new possibility for the
analysis of multivariate time-series, is also has certain limitations.
If MdRQA is run on un-embedded multidimensional time-series,
certain dynamics of the system might not be properly captured
if not all dimensions of the system are adequately represented
as dimensions of the multivariate time-series. Particularly with
empirical data, the problem is that – in contrast to the Lorenz
system example we are using here – we usually do not know
the dimensionally of the data a priori. Of course, data can be
embedded using MdRQA as well, but the embedding parameters
have to be estimated on the individual component dimensions
of the multidimensional time-series and such an estimation
might not properly represent the actual parameters of the
multidimensional time-series (see section “Issues and Pitfalls”).

RUNNING THE ANALYSIS IN R

To run the analysis in R, you need to copy-paste the mdrqa()-
function from the Supplementary Materials to this paper into
your workspace (or download it from a repository - see the
link in the Supplementary Materials). Now, we want to use the
three time-series lorData$x, lorData$y, and lorData$z to run a
MdRQA3, that is an analysis with three time-series. This also
means that the underlying phase-space is at least 3-dimensional.
Of course, on top of that we might have to embed the time-series
via the method of time-delayed embedding. However, checking
the individual estimates of m for the three time-series (Table 2),

FIGURE 11 | Phase-space reconstruction through 3-D embedding of the individual time-series of the Lorenz-system (A–C) and the phase-space portrait of the
actual 3-dimensional Lorenz-system (D).
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BOX 5 | Computing MdRQA3 for the full 3-dimensional Lorenz system.
mdrqa3_results <– mdrqa(data = as.matrix(cbind(lorData$x, lorData$y,
lorData$z)), emb = 1, del = 1, norm = ’euc’, rad = 0.2) # run MdRQA3 on
the x, y and z dimensions of the Lorenz system

image(mdrqa3_results$RP) # show recurrence plot

it seems that all time-series are 3- or 4-dimensional. Hence, we
decide not to embed anymore, because minimum dimensionality
of phase-space (i.e., 3) is already pretty close to those estimates.

If the estimates of individual time-series dimensionality
through the false-nearest-neighbor function would be
substantially higher, for example 6, then we would additionally
embed the time-series a single time at their estimated average (or
maximum) delay. Because each of the three time-series already
contributes one dimension to the phase-space, embedding
this 3-dimensional time-series once would already yields a
6-dimensional phase-space.

To use the three time-series without further embedding, we
call the mdrqa()-function (see Box 5). The data for the mdrqa()-
function needs to be entered as a single matrix with each time-
series being a separate column in the matrix and all the data
points in rows. Hence, the as.matrix()-function and the cbind()-
function are used to convert the three time-series into a matrix
with three columns. emb is the embedding dimension, and
since we do not want to embed the time-series further, we set
emb = 1. del is the delay parameter, norm the parameter for phase-
space normalization, and rad the radius parameter just as in the
analyses above.

Figure 12 shows the results of the MdRQA3. Because MdRQA
treats the time-series as a single multidimensional series, the
resulting recurrence plot is symmetric. Similar to CRQA, we
face the problem that the absolute values of the results are
dependent on the radius parameter, and that we do not know
how to evaluate them in terms of whether there is strong or
weak coupling between the three time-series. As suggested in
the Section ” Cross-Recurrence Quantification Analysis,” one
could perform an additional analysis with all time-series shuffled,
or set the results in relation to the individual series’ RQA
results. Note, however, that higher values for MdRQA are not
necessarily an index of superior group coordination (Wallot
et al., 2016a,b). Sometimes, looser coupling on the group level
can be beneficial for task performance than stronger coupling,
implying that lower MdRQA results are positively correlated and
more predictive of group performance (see also Abney et al.,
2015; Vink et al., 2017). In other words this is an interesting,
open empirical question that MdRQA analysis can help to
address.

Next, we could investigate whether there are differences on
the dyadic level that could be of interest – for example, stronger
coupling between some of the dimensions of the Lorenz-system
compared to others. Translated into group data analysis, such an
analysis allows to investigate whether all members of a group are
equally interacting with each other or whether there are some
preferred dyads within a group that tend to couple their behavior
more (or less) with each other than with others.

FIGURE 12 | Recurrence plot and results of the MdRQA3 analysis for the
time-series lorData$x, lorData$y, and lorData$z.

BOX 6 | Running MdRQA2 on the three possible pairings of the Lorenz
system.
mdrqa2_results_xy <– mdrqa(data = as.matrix(cbind(lorData$x, lorData$y)),
dims = 2, emb = 2, del = 9, norm = ‘euc’, rad = 0.2) # run MdRQA2 on the x
and y dimensions of the Lorenz system

mdrqa2_results_xz <– mdrqa(data = as.matrix(cbind(lorData$x, lorData$z)),
dims = 2, emb = 2, del = 9, norm = ‘euc’, rad = 0.2) # run MdRQA2 on the x
and z dimensions of the Lorenz system

mdrqa2_results_yz <– mdrqa(data = as.matrix(cbind(lorData$y, lorData$z)),
dims = 2, emb = 2, del = 9, norm = ‘euc’, rad = 0.2) # run MdRQA2 on the y
and z dimensions of the Lorenz system

To test this, one can run the three possible dyads as
MdRQA2 (i.e., lorData$x with lorData$y, lorData$x with
lorData$z, and lorData$y with lorData$z) and examine their
results (see Box 6). As can be seen in Figure 13, dyad
x-y seems to exhibit stronger coupling in terms of %REC
compared to the other dyads, while dyad y-z seem to exhibit
more stable periods of coupling in terms of ADL compared
to the other dyads. In any case, the combination of x and
z seems to exhibit the weakest coupling of the three. All,
however, differ in some aspect from the “true” multivariate
group-level dynamics we’ve seen when subjecting the three
dimensions of the Lorenz-system simultaneous to MdRQA3
(Figure 12).
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FIGURE 13 | Recurrence plots and MdRQA2 results for the three dyads lorData$x, lorData$y (A), lorData$x, lorData$z (B) and lorData$y, lorData$z (C) of the group.

PITFALLS AND ISSUES

While the advantage of MdRQA lies in its applicability to groups
of n > 2, it also has a certain number of disadvantages compared
to the other techniques presented above. As of now, it is not
possible to investigate leader-follower relationship with MdRQA,
as for example with DCRP.

Also, there are a few issues with data preparation and
parameter estimation. Currently, MdRQA parameters are
estimated on the individual component time-series that
enter the analysis. However, the multivariate time-series in
which they are combined could exhibit different average
mutual information and false-nearest-neighbor properties
than the average of the individual time-series. Hence,
these estimates are more uncertain. However, Wallot and
Mønster (2018) have recently developed Matlab functions
for the estimation of embedding parameters for multivariate
time-series.

If one wants to compare the MdRQA results across different
group levels (i.e., MdRQA2 with MdRQA3), one needs to keep
in mind that the overall dimensionality of the time-series should
be the same, or at least as similar as possible. As a rule of
thumb, higher (embedding) dimensionality de-correlates the
phase-space, and leads at least to fewer recurrences. Hence, if a
3-dimensional time-series is also embedded once (i.e., MdRQA3
with emb = 2), this results in a 6-dimensional phase-space.
To compare the resulting MdRQA values with results from 2-
dimensional time-series, one might have to embed these twice
(i.e., MdRQA2 with emb = 3), which also results in a 6-
dimensional phase-space (see Wallot et al., 2016a,b). However,
sometimes the true dimensionality cannot be re-produced, and
then trying to minimize the gap is the best that one can do.

Finally, the answer to the question of whether or not
to normalize data before subjecting them to MdRQA is not
straightforward. For example for the Lorenz-system, normalizing
the time-series would not improve the results of the MdRQA,
because the non-normalized time-series are properly scaled with
regard to each other already. Similarly, when having time-series

that are measured on the same scale, their absolute values might
now hold meaningful information for the multidimensional
dynamics – but that is not necessarily so, and normalizing
the data beforehand is definitely suggested if one wants to
have equal weighting of the dynamics of each individual
time-series in the resulting recurrence plot and MdRQA
analysis.

A NOTE ON COMPARING SAMPLES

The logic of using recurrence-based measures (e.g., %REC,
%DET, ADL, MDL, etc.) with inferential statistics for purposes
of sample comparison is not different from comparing means
(or other quantities) between samples of participants – i.e.,
they are computed for each participant, condition, or trial, and
are subsequently put into statistical models that evaluate them
across these categories. However, the estimation and setting of
parameters, as well as a few other issues might warrant some
guiding remarks in this context. As it has been summarized in
Wallot (2017) and in Wallot and Grabowski (in press) the main
issues are the following:

Of course, the recurrence-based analyses above are time-
series analysis techniques, so one needs to have multiple data
points in order to apply the analyses. The more data points,
the more reliable the measures will be, but this depends also
on the dynamics in question. Additionally, because these are
multivariate analyses, one needs to have at least two or more
matched time-series with the same number of data points (for a
tutorial introduction of applying RQA to individual time-series
in R, see Wallot, 2017). With some kinds of data however –
nominal data or data with strong, distinctive dynamics – as
few as 10–30 data points might already be sufficient, while for
others, a few hundreds or several thousands of data points are
certainly desirable. Again, the most important issue is to capture
the phenomenon one wants to investigate sufficiently, and to
do so at an (average) sampling rate that sufficiently covers the
changes in the observable over time.
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When comparing data sets that compose a samples, this is
usually done by first selecting a single set of parameters for all
of them, then to run the respective recurrence-based analysis
on each dyad (or group) and obtain the results. Hence, one
would start to chart the parameters as in Table 2, and then
use the same (maybe the average or maximum) value for delay
and embedding dimension across all groupings in order to
properly compare the resulting recurrence measures (Wallot
et al., 2012). If the sample is relatively diverse in terms of the
estimated parameters, one should select parameter values for
delay and embedding dimension that are somewhat above the
average, because recurrence-based analyses are robust against
(moderate degrees) of over-embedding (Webber and Zbilut,
2005).

Similarly, a single radius parameter r should be picked for
the whole sample: One can start again with an arbitrary value
for r, run all pairings of data sets with this radius, and then
inspect the distribution of percent recurrence (%REC) in the
samples. As mentioned earlier, %REC should be low, but not
too low in order to obtain meaningful results. For inter-event-
times the lowest data set in the sample should have not much
less than one percent of recurrence (i.e., %REC ≈ 1%), with the
majority of the data sets being between %REC = 5 and 10%.
For relatively deterministic time-series this figure can be lower
(%REC between 1 and 5%, and sometimes even below that), but
for very noisy data, it can be substantially higher. In any case,
the radius parameter r might have to be adjusted a couple of
times before a satisfying solution is found. If one uses categorical
data, the radius should be set to 0 or to a tiny value, so that
(cross-)recurrences are only based on the repetition of identical
instances.

If the data sets cannot be reasonably fitted with a single radius
parameter – that is, for some value of r, some of the data sets are
at or close to %REC = 100%, and at the same time some are at
or close to %REC = 0%, one can adjust the radius for each data
set individually in order to keep the percentage of recurrence
constant across all data sets (e.g., fixed percent recurrence of
%REC = 5% for each data set). Of course, in this case, %REC
needs to be omitted from the inferential statistical analysis, as it
should be very similar (or the same) across pairings in all samples,
but the other measures, such as %DET, ADL, and MDL can be
still analyzed (as a stand-in for %REC, one can instead include
analysis of the radius parameter r that is now different across
pairs of groups of time-series. However, this might not yield
the same results, as r and %REC do not scale linearly with each
other).

If one notices great heterogeneity of the values of one of the
parameters or %REC across the samples, one can also explore the
parameter space. This means that the parameters d, m, and r are
systematically varied to check whether the resulting solutions are
stable across these variations. A common first exploration of the
parameter space would be to run the analysis in question for the
lowest, highest, and average values of each parameter and pick
3 different values r that yield low (%REC ≈ 1 to 3%), moderate
(%REC ≈ 5 to 10%), and high (%REC ≈ 15 to 20%) percentages
of (cross-)recurrence. If the resulting recurrence measures (or
at least the direction of the effects observed in those measures)

converge across the different parameter settings, then one can
accept the occurrence of a few individual cases where %REC = 0
or 100%.

Another issue that arises when using recurrence-based
analysis is the number of results variables produced by the
analyses (e.g., %REC, %DET, ADL, MDL). In principle, all of these
variables can be dissociated, but empirically this is not always the
case. As a guideline for interpretation, while relatively high %REC
means that many individual instances in a pair or group of time-
series are recurrent, %DET means that several of these individual
instances are connected. If %DET is high, and ADL and MDL are
low, this means we have a high, but rather homogenous cross-
correlation in the time-series. If %DET is low and ADL and MDL
are high, this means that the coupling of the time-series is very
heterogeneous, and is probably composed of changing epochs
of high and low correlation between the time-series. If ADL is
high, and MDL is comparatively low, this could be indicative of
bursting behavior, where the observed performance is composed
of bursts of coupling and de-coupling.

However, the described relations between %REC, %DET, ADL,
and MDL should only be seen as a rule-of-thumb, as an initial
suggestion. An inspection of the associated (cross-)recurrence
plots will help to interpret the shared dynamics between the time-
series. As mentioned above, for inter-event-type data, many of
the results variables are highly correlated, and do not actually
dissociate different dynamics. In such cases, one can pick one (or
a few) of the variables that seem to capture the composition of
the corresponding (cross-)recurrence plot best. Alternatively, the
different measures can also be subjected to principle component
analysis, and the extracted component(s) can be treated as a
dependent (or predictor) variable which captures generalized
stability or correlation in the data – depending on the respective
component loadings.

Finally, there is a yet unanswered question regarding the
number of degrees of freedom in inferential statistical models
when analyzing pairs of data sets. On one hand, when one is
investigating all possible pairs in a sample using, for example,
CRQA, one has many more observations than individual
participants. Hence, such kind of analysis seems to inflate the
degrees of freedom available, and adjustments for this inflation
are needed. On the other and, correlations are not transitive,
so it can be argued that all possible pairings actually provide
a reasonably independent degree of information (except from
their limits, only perfect correlations and perfect independence
between data sets exist). However, this question for the current
research practice has not yet received a conclusive answer.

CONCLUSION AND FURTHER
READINGS

Overall, the combination of CRQA, DCRP, and MdRQA allows
for a very detailed investigation of multivariate time-series. They
allow to quantify the strength of coupling between two or more
time-series, to quantify leader-follower relations between them,
and to assess dynamics at different levels of composition of the
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observables. Recurrence-based analyses are especially suitable
for time-series data with non-stationary properties; moreover,
they are robust against extreme outliers and do not make
any assumptions about particular distributions or particular
relationships between the time-series of interest. This makes
them also useful for applications in naturalistic settings, or
investigations over longer time intervals. Again, we want to point
out one difference between CRQA (and DCRP, accordingly) on
the one hand, and MdRQA on the other hand: While the former
can rely on an established procedure for proper phase-space
reconstruction (if one wants to perform analysis on embedded
data), it is as of now unclear how these procedures perform
multivariate cases where MdRQA is used, if one does not know
the embedding properties and the composition of the time-series
beforehand (for a discussion, see the section “Multidimensional
Recurrence Quantification Analysis”).

The current tutorial provided hands-on examples of how to
run the different analysis in R, and how to utilize and interpret
the results. Moreover, we outlined the current best practice for
how to apply the analyses to empirical data, and in the context
of sample comparisons. In addition to our recommendations,
Marwan (2011) summarized general problems and pitfalls

applying recurrence-based analysis that might be valuable for
interested readers. Also, we can recommend the webbook edited
by Riley and Van Orden (2004) for a conceptual introduction to
RQA and CRQA on the webpage of the NSF, and the webpage
www.recurrence-plot.tk, hosted by Norbert Marwan from the
PIK Potsdam, which provides access to various other RQA-
software packages, and hosts a near exhaustive bibliography of
applications of recurrence-based analysis across several scientific
disciplines.
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